Completing the Square

Introduction:

The procedure called completing the square is used to solve quadratic equations
The general form of a quadratic is

$$
a x^{2}+b x+c=0
$$

Some quadratic expressions are perfect squares. For example $x^{2}-6 x+9=0$ can be written as giving $(x-3)^{2}=0$ the solution $\quad x=3$
Similarly, $4 x^{2}-10 x+25$ can be written as $(\mathbf{2} x-\mathbf{5})^{\mathbf{2}}$ which has the solution $x=\mathbf{2} \frac{\mathbf{1}}{\mathbf{2}}$
In general a quadratic expression is not a perfect square by by adding a number it can become a perfect square and so a solution can be found. This procedure is known as completing the square while normally given as an algebraic question it really one of simple arithmetic.
If we consider the equation $x^{2}-6 x+8=0$ it is similar to our original example less 1 , so it takes little to deduce that to complete the square all you have to do is add 1 to it. At the same time to keep the equation the same 1 must also be added the side, RHS so

$$
x^{2}-6 x+8+1=1 \Rightarrow x^{2}-6 x+9=1 \Rightarrow(x-3)^{2}=1
$$

Now as before taking the square root of both sides and note that both +1 and -1 squared are 1

$$
x-3= \pm 1 \Rightarrow x=4 \text { or } x=2
$$

This equation was of course easily factorised which would normally be the way to solve a simple equation of this sort.
Consider the equation $2 x^{2}+8 x-21=0$ it is not so obvious what number needs to be added.
The procedure to find this is straight forward. First dived the whole equation by the coefficient of the x squared and then add half the coefficient in x squared to both the RHS and LHS.

$$
\begin{array}{cc}
x^{2}+4 x=\frac{21}{2} & +\left(\frac{4}{2}\right)^{2} \\
x^{2}+4 x+\left(\frac{4}{2}\right)^{2}=\frac{21}{2}+\left(\frac{4}{2}\right)^{2} \Rightarrow x^{2}+4 x+4=4+\frac{21}{2} \Rightarrow(x+2)^{2}=\frac{29}{2}
\end{array}
$$

Calculate the terms and gather those not involving x on the RHS. This now gives the squared expression so it then remains to take the square root of each side and calculate the values of x

$$
\begin{array}{rl}
x+2= \pm \sqrt{\frac{29}{2}} \Rightarrow x= & -2 \pm 3.81 \quad \text { giving to } 2 \mathrm{dp} x=-5.81 \text { or } x=1.81 \\
& \text { Of these three equations } \\
3 x^{2}+8 x+5=0 & 2 x^{2}-3 x-17=0 \quad 3.5 x^{2}+6.5-45=0
\end{array}
$$

The number to add to complete the squares are respectively, check why

$$
\left(\frac{8}{6}\right)^{2} \quad\left(\frac{3}{4}\right)^{2} \quad\left(\frac{6.5}{7}\right)^{2}
$$

Considering the general equation of the quadratic by completing the square the formula for the solution of quadratics can be derived.

$$
a x^{2}+b x+c=0
$$

$$
\begin{gathered}
\Rightarrow x^{2}+\frac{b}{a}=-\frac{c}{a} \quad \text { The number to add to complete the square is }\left(\frac{b}{2 a}\right)^{2} \Rightarrow \frac{b^{2}}{4 a^{2}} \\
\therefore \Rightarrow x^{2}+\frac{b}{a}+\frac{b^{2}}{\mathbf{4} a^{2}}=-\frac{c}{a}+\frac{b^{2}}{\mathbf{4} a^{2}} \Rightarrow\left(x+\frac{b}{2 a}\right)^{2}=\left(\frac{b^{2}-\mathbf{4} a c}{4 a^{2}}\right)
\end{gathered}
$$

Now take the square root of each side remembering the root can be both negative and positive
$\therefore x+\frac{b}{2 a}= \pm \sqrt{\frac{\left(b^{2}-4 a c\right)}{4 a^{2}}} \Rightarrow x=-\frac{b}{2 a} \pm \frac{\sqrt{\left(b^{2}-4 a c\right)}}{2 a} \Rightarrow x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$
Note that if $4 a c>\mathrm{b}^{2}$ then there are no real roots.
Questions: Solve by completing the square.
1.) $x^{2}+8 x+7=0$
2.) $x^{2}+10 x+3=0$
3.) $x^{2}-8 x-2=0$
4.) $2 x^{2}+8 x+2=0$
5.) $3 x^{2}-6 x+1=0$
6.) $4 x^{2}-2 x-5=0$
7.) $4 x^{2}-x=8$
8.) $2 x^{2}+k+k^{2}=0$

